/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Interface Segregation Principle
Role- and Private Interfaces

VeV Roles...

AARHUS UNIVERSITET
* Role (Da: Rolle / function)
« ... will be treated in much more detail soon, but...
« We know it from plays and acting
— Daniel Craig plays the role of James Bond

« And in the more general understanding of a function
— It was the nurse’s role to tend to the patient
— Itis the physician’s role to plan a treatment for the patient

Definition: Role (General)

A function or part performed especially na parﬁcular operation or pro-
cess.

VeV Role-Person

AARHUS UNIVERSITET

* Roles are ‘played’/fulfilled’ by persons
— The one that ‘does the function / fulfill the responsibilities’

— James Bond is played by Sean Connery in this movie
— The SWEA censor today is Clemens Klokmose

— The physician on duty on the ward today is Jens Madsen
— The host on the news broadcast today is ...

 Arole can be played by many different persons
— Of course, if they are trained and skilled to fulfill the role...

VeV Role-Person

AARHUS UNIVERSITET

« A person can play many different roles

— Example: My roles:
» Teacher, researcher, husband, father, taxpayer, colleague, friend, ...

« But they are only accessible for a given audience
— | am a father and a teacher. Each with responsibilities...

— But not all have access to all my roles, of course
» Student: “Could you explain the ‘Role’ concept in programming?”
— Yes, | will do that. That responsibility belongs to the Teacher role.
« Student: “Please, Henrik, can you fix my flat bike tire?”
— No, | will not! That responsibility belongs to the Father role

« Child: “Can you fix my flat bike tire?”
— Hm hm, ok, but | am going to teach you to do it yourself...

eV Roles define Access

AARHUS UNIVERSITET

« So — depending on the role of the requester some
requests are allowed and some are not

— Only persons in ‘my children role’ interact with my father interface
« Example: fix flat tire responsibility

— Only Danish Tax may interact with my taxpayer interface
« Example: provide yearly earning responsibility

— Only the person in ‘my wife role’ interact with my husband
interface

* No examples ©

/v Bottomline

AARHUS UNIVERSITET
 Role — Person is a many-to-many relation
— One role played by many persons
« But the person needs to fulfill the requirements/training to play role
— One Person plays many roles

« But access to a given role, requires a specific role by the audience

Person

CS@AU Henrik Beerbak Christensen 6

/v

AARHUS UNIVERSITET

Relating to Software

eV Roles...

AARHUS UNIVERSITET

« We use interface in our OO language to express a role

— interface Game

« Express the responsibilities of our HotStone game
— Allow clients to inspect game state, play a card, attack a hero, etc.

— Interface Card

» Express the responsibilities of a HotStone card
— Store mana cost, health, etc. Allow clients to get those values.

— Interface RateStrategy

« Express the responsibility to compute parking time based upon a
given amount of money

Definition: Role (Software)

A set of responsibilities and associated protocols.

/v Role-Object

AARHUS UNIVERSITET

* QObjects implement/’play” these roles
— Class StandardGame implements Game { ... }
— Game game = new StandardGame(....);

— Now we know that ‘game’ object can act as defined by the role
‘Game’

— ‘Game’ is currently implemented by about 90 SWEA groups!
« All different (except if a group cheats ©)!

— And AU GitLab probably have > 500 implementations of Game

CS@AU Henrik Baerbak Christensen 9

/v Role-Object

AARHUS UNIVERSITET
* Does it make sense to also think:

* Yes — we have already such a situation in HotStone!

 The Game object is already used in two different contexts

CS@AU Henrik Baerbak Christensen 10

eV Game Roles

AARHUS UNIVERSITET

« The Ul needs to interact with the Game object

— But only by interacting via the Game interface’s method
* Which allows Game to ensure all HotStone rules are obeyed
— playCard(...) OK
— modifyHeroHealth(Findus, -2) Not OK

Game Object

CS@AU Henrik Baerbak Christensen 11

/v

Game Roles
AARHUS UNIVERSITET

« But we also have strategies that need to do more

— The Strategi to handle Hero Power needs more specialized
access
— playCard(...) OK
— modifyHeroHealth(Findus, -2) Perfectly OK

Game Object <: ThaiHeroPower
Strategy

Hero Power. The ThaiChef’s power Chili will decrease the opponent hero’s health
by 2. Description: Deal 2 damage to opponent hero. The DanishChef’s power Sovs

will field a special minion “Sovs” of value (attack, health) = (1,1). Description:
Summion Sovs card.

CS@AU

Henrik Baerbak Christensen 12

/v And Actually...

AARHUS UNIVERSITET

« We have the exact same situation with Card and Hero

— The Ul must never change, say, health of Hero/Card
» As Game object then cannot guaranties rules are obeyed

R : ":'; : : Hero Object
2 & Card Object

— But the Game object of course needs to change all state in all
heroes and all cards

« card.deltaHealth(-3);

CS@AU Henrik Baerbak Christensen 13

Y o ISP

AARHUS UNIVERSITET
« This is the Interface Segregation Principle
* ‘Do not depend on methods that you do not use’

Detfinition: Interface Segregation Principle

In the field of software engineering, the interface segregation principle
(ISP) states that no code should be forced to depend on methods it does
not use. ISP splits interfaces that are very large into smaller and more
specific ones so that clients will only have to know about the methods
that are of interest to them. Such shrunken interfaces are also called role
interfaces.

« Or - ‘delimit what methods a given object may access’
— My children are the only with access to my father interface
— My SWEA students are the only with access to my teacher intf.

CS@AU Henrik Baerbak Christensen 14

eV Fine-grained Roles

AARHUS UNIVERSITET
« The ‘more specific’ role is expressed as a Role Interface

Definition: Role Interface

A role interface is defined by looking at a specific interaction between sup-
pliers and consumers. A supplier component will usually implement
several role interfaces, one for each of these patterns of interaction.

* Ala again

— | provide a ‘teacher’ interface (one role interface)
— And a ‘taxpayer’ interface (another role interface)
— Etc.

CS@AU Henrik Baerbak Christensen 15

/v So — Our Game Can

AARHUS UNIVERSITET

« Have the Ul oriented interface
— The current Game interface, in the handed-out code

« Have a more specific interface, with more privileges to
the strategies...

— Ala a ‘MutableGame’ interface or another appropriate name
* Only provided to the strategies

« Contains special mutators like for example
— deltaHeroHealth(Player who, int deltaValue);

* Then

— class StandardGame implements Game, MutableGame {...}
— (class StandardCard implements Card, MutableGard {...})

/v

AARHUS UNIVERSITET
o After the Autumn break, we will add a Ul to HotStone

 Building a Ul for 2D graphics from the bottom up is
tedious
* S0, we use a library/framework: MiniDraw

— The central ‘collection’ of graphical elements on-screen is the
Drawing role

Another Example

public interface Drawing exXtends FigureCollecticn, SelectionHandler |

}

CS@AU Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET
« The FigureCollection in

Example

MiniDraw only deals with adding,

removing, and iterating the collection of Figures in

public interface FigureCollection extends Iterable<Figure> {
* %k

MiniDraw A

Adds a figure and sets its container to refer to this drawing. If you have

* several threads that may call add, scope it by the lock/unlock methods.

= fl=lix]

£2Z Add + Remove fi...Click for action

*

* @param Tigure
*

*
*/
Figure remove(Figure figure);

* The Drawing role will render figures in the order they are inserted,
* so if they overlap the LAST added figure will appear on top. Use
* zOrder method to change ordering.

* @param figure

the figure to add

* @return the figure that was inserted.
Figure add(Figure figure);

/xx
* Removes a figure. If you have several threads that may call add, scope it

by the lock/unlock metheds.

the figure to remove
@return the figure removed

CS@AU

A specific interaction (add+remove) between

the Ul and the Drawing, expressed as the Role

Interface ‘FigureCollection’

Henrik Baerbak Christensen

/v Private Interface

AARHUS UNIVERSITET

* Role interfaces are often used to enforce more specific
encapsulation than is possible using private/public
methods and instance variables...

Definition: Private Interface

Provide a mechanism that allows specific classes to use a non-public sub-
set of a class interface without inadvertently increasing the visibility of
any hidden member variables or member functions.

* Let us make an example, highly inspired by our project...

CS@AU Henrik Baerbak Christensen 19

/v

AARHUS UNIVERSITET

« We have a system/framework/Fagade which presents

(Xx,y) points to outside code, but that outside code must
never modify the (x,y) values!

« Read-only Role interface is a solution to that.

— Only accessor methods, o |
public interface Point {

no mutator methods... int getX():

int getY();
}

Example

public interface Facade {

— (Ana|ogy; Point getPoint();
« Fagade = Game :
» Point = Card)

/v Example

AARHUS UNIVERSITET

 However, internal classes inside the Facade of course
needs to mutate the state of these (x,y) points.

« Let us say that one class needs to translate (dx,dy) points
* Private Interface is a solution to that

public interface TranslatablePoint {
void translation(int dx, int dy);

}

public interface PointStrategy() {
void doSomethingToPoint(TranslatablePoint p);

}

CS@AU Henrik Baerbak Christensen 21

/v Example

AARHUS UNIVERSITET

* Now the internal, implementing, class of course
Implements both

public class StandardPoint implements Point, TranslatablePoint {
[all three methods implemented here]

}

public class MyFacade implements Facade {
StandardPoint point;
Point getPoint() { return point; }
}

« That is, if you use ‘getPoint()’ from the outside you only
get access to ‘getX() and ‘getY()

CS@AU Henrik Baerbak Christensen 22

/v Example

AARHUS UNIVERSITET
* Now, an internal PointStrategy can translate points like

public class Strategyl implements PointStrategy {
void doSomethingToPoint(TranslatablePoint p) {
p.translation(+3, +7);
}
}

* And can be called internally like

strategy.doSomethingToPoint(point);

CS@AU Henrik Baerbak Christensen 23

/v Example

AARHUS UNIVERSITET
 However, a PointStrategy cannot access (x,y)...

public interface TranslatablePoint {
void translation(int dx, int dy);

}

 However, of course it is often the case, that we need just
that.

 Exercise: How do we solve that?

CS@AU Henrik Baerbak Christensen 24

/v Solution 1:

AARHUS UNIVERSITET

* Fine-grained solution: Missing accessor methods
— Just add those methods that are missing

public interface TranslatablePoint {
int getX();
int getY();
void translation(int dx, int dy);

}
* Pro

— Can select just the right set of accessors

* (here it is both of them, but if read-only had 20, we may just pick the
two we need).

« Con
— Same methods are now present in two interfaces

CS@AU Henrik Baerbak Christensen 25

/v Ups?

AARHUS UNIVERSITET
e Uhum — how does that work in Java?

public interface Point { public interface TranslatablePoint {
int getX(); int getX();
int getY(); int getY();
} void translation(int dx, int dy);
}

public class StandardPoint implements Point, TranslatablePoint {
[all three methods implemented here]

}

« StandardPoint must now implement ‘getX()’ twice or?7??

« Exercise: What happens?

CS@AU Henrik Baerbak Christensen 26

/v Solution 2:

AARHUS UNIVERSITET

« Coarse-grained approach: Extend existing interface
— Just implement both

public interface TranslatablePoint]extends Point {
void translation(int dx, int ay).

}

 Pro
— Less typing
— You can actually Program to an Interface in the facade impl!

ments Facade {

« Con
— You get all methods

return point; }

CS@AU Henrik Baerbak Christensen 27

/v Mandatory Note

AARHUS UNIVERSITET
« We have read-only role interfaces for Card and Hero in
HotStone.

— But Game’s implementation and strategies need to manipulate
them...

— Use private interfaces for that ©!

« Strategies needs special mutations of Game
— Use private interface(s) for that !

 Now you ‘program to an interface’, and avoid hard
coupling to, say, StandardGame etc.

/v Mandatory Note

AARHUS UNIVERSITET

« And iff you use the ‘extending existing interface’
— interface MutableGame implements Game { (mutators here) }

* ... you can now remove most casts and hard couplings to
your StandardGame/StandardCard etc
— Map<Player, List<MutableCard>> handMap = ...
— Interface HeroPowerStrategy {
— public void usePower(MutableGame game);
-}

« ... and still have the full flexibility of providing any
concrete class that implements MutableX in your

