
Software Engineering

and Architecture

Interface Segregation Principle

Role- and Private Interfaces

Roles…

• Role (Da: Rolle / function)

• … will be treated in much more detail soon, but…

• We know it from plays and acting

– Daniel Craig plays the role of James Bond

• And in the more general understanding of a function

– It was the nurse’s role to tend to the patient

– It is the physician’s role to plan a treatment for the patient

CS@AU Henrik Bærbak Christensen 2

Role-Person

• Roles are ‘played’/’fulfilled’ by persons

– The one that ‘does the function / fulfill the responsibilities’

– James Bond is played by Sean Connery in this movie

– The SWEA censor today is Clemens Klokmose

– The physician on duty on the ward today is Jens Madsen

– The host on the news broadcast today is …

• A role can be played by many different persons

– Of course, if they are trained and skilled to fulfill the role…

CS@AU Henrik Bærbak Christensen 3

Role-Person

• A person can play many different roles

– Example: My roles:

• Teacher, researcher, husband, father, taxpayer, colleague, friend, …

• But they are only accessible for a given audience

– I am a father and a teacher. Each with responsibilities…

– But not all have access to all my roles, of course

• Student: “Could you explain the ‘Role’ concept in programming?”

– Yes, I will do that. That responsibility belongs to the Teacher role.

• Student: “Please, Henrik, can you fix my flat bike tire?”

– No, I will not! That responsibility belongs to the Father role

• Child: “Can you fix my flat bike tire?”

– Hm hm, ok, but I am going to teach you to do it yourself…

CS@AU Henrik Bærbak Christensen 4

Roles define Access

• So – depending on the role of the requester some

requests are allowed and some are not

– Only persons in ‘my children role’ interact with my father interface

• Example: fix flat tire responsibility

– Only Danish Tax may interact with my taxpayer interface

• Example: provide yearly earning responsibility

– Only the person in ‘my wife role’ interact with my husband

interface

• No examples ☺

CS@AU Henrik Bærbak Christensen 5

Bottomline

• Role – Person is a many-to-many relation

– One role played by many persons

• But the person needs to fulfill the requirements/training to play role

– One Person plays many roles

• But access to a given role, requires a specific role by the audience

CS@AU Henrik Bærbak Christensen 6

Person Role
* *

Relating to Software

Roles…

• We use interface in our OO language to express a role

– interface Game

• Express the responsibilities of our HotStone game

– Allow clients to inspect game state, play a card, attack a hero, etc.

– Interface Card

• Express the responsibilities of a HotStone card

– Store mana cost, health, etc. Allow clients to get those values.

– Interface RateStrategy

• Express the responsibility to compute parking time based upon a

given amount of money

CS@AU Henrik Bærbak Christensen 8

Role-Object

• Objects implement/”play” these roles

– Class StandardGame implements Game { … }

– Game game = new StandardGame(….);

– Now we know that ‘game’ object can act as defined by the role

‘Game’

• A role can be played by many different objects

– ‘Game’ is currently implemented by about 90 SWEA groups!

• All different (except if a group cheats ☺)!

– And AU GitLab probably have > 500 implementations of Game

CS@AU Henrik Bærbak Christensen 9

Role-Object

• Does it make sense to also think:

• One object plays many different roles, depending upon

who wants to access it?

• Yes – we have already such a situation in HotStone!

• The Game object is already used in two different contexts

CS@AU Henrik Bærbak Christensen 10

Game Roles

• The UI needs to interact with the Game object

– But only by interacting via the Game interface’s method

• Which allows Game to ensure all HotStone rules are obeyed

– playCard(…) OK

– modifyHeroHealth(Findus, -2) Not OK

CS@AU Henrik Bærbak Christensen 11

Game Object

Game Roles

• But we also have strategies that need to do more

– The Strategi to handle Hero Power needs more specialized

access

– playCard(…) OK

– modifyHeroHealth(Findus, -2) Perfectly OK

CS@AU Henrik Bærbak Christensen 12

Game Object
ThaiHeroPower

Strategy

And Actually…

• We have the exact same situation with Card and Hero

– The UI must never change, say, health of Hero/Card

• As Game object then cannot guaranties rules are obeyed

– But the Game object of course needs to change all state in all

heroes and all cards

• card.deltaHealth(-3);

CS@AU Henrik Bærbak Christensen 13

Hero Object

Card Object

ISP

• This is the Interface Segregation Principle

• ‘Do not depend on methods that you do not use’

• Or – ‘delimit what methods a given object may access’

– My children are the only with access to my father interface

– My SWEA students are the only with access to my teacher intf.

CS@AU Henrik Bærbak Christensen 14

Fine-grained Roles

• The ‘more specific’ role is expressed as a Role Interface

• Ala again

– I provide a ‘teacher’ interface (one role interface)

– And a ‘taxpayer’ interface (another role interface)

– Etc.

CS@AU Henrik Bærbak Christensen 15

Martin Fowler

So – Our Game Can

• Have the UI oriented interface

– The current Game interface, in the handed-out code

• Have a more specific interface, with more privileges to

the strategies…

– Ala a ‘MutableGame’ interface or another appropriate name

• Only provided to the strategies

• Contains special mutators like for example

– deltaHeroHealth(Player who, int deltaValue);

• Then

– class StandardGame implements Game, MutableGame {…}

– (class StandardCard implements Card, MutableGard {…})
CS@AU Henrik Bærbak Christensen 16

Another Example

• After the Autumn break, we will add a UI to HotStone

• Building a UI for 2D graphics from the bottom up is

tedious

• So, we use a library/framework: MiniDraw

– The central ‘collection’ of graphical elements on-screen is the

Drawing role

CS@AU Henrik Bærbak Christensen 17

Example

• The FigureCollection in MiniDraw only deals with adding,

removing, and iterating the collection of Figures in

MiniDraw

CS@AU Henrik Bærbak Christensen 18

A specific interaction (add+remove) between
the UI and the Drawing, expressed as the Role

Interface ‘FigureCollection’

Private Interface

• Role interfaces are often used to enforce more specific

encapsulation than is possible using private/public

methods and instance variables…

• Let us make an example, highly inspired by our project…

CS@AU Henrik Bærbak Christensen 19

James Newkirk

Example

• We have a system/framework/Façade which presents

(x,y) points to outside code, but that outside code must

never modify the (x,y) values!

• Read-only Role interface is a solution to that.

– Only accessor methods,

no mutator methods…

– (Analogy:

• Façade = Game

• Point = Card)

CS@AU Henrik Bærbak Christensen 20

Example

• However, internal classes inside the Façade of course

needs to mutate the state of these (x,y) points.

• Let us say that one class needs to translate (dx,dy) points

• Private Interface is a solution to that

CS@AU Henrik Bærbak Christensen 21

Example

• Now the internal, implementing, class of course

implements both

• That is, if you use ‘getPoint()’ from the outside you only

get access to ‘getX()’ and ‘getY()’

CS@AU Henrik Bærbak Christensen 22

Example

• Now, an internal PointStrategy can translate points like

• And can be called internally like

CS@AU Henrik Bærbak Christensen 23

Example

• However, a PointStrategy cannot access (x,y)…

• However, of course it is often the case, that we need just

that.

• Exercise: How do we solve that?

CS@AU Henrik Bærbak Christensen 24

Solution 1:

• Fine-grained solution: Missing accessor methods

– Just add those methods that are missing

• Pro

– Can select just the right set of accessors

• (here it is both of them, but if read-only had 20, we may just pick the

two we need).

• Con

– Same methods are now present in two interfaces

CS@AU Henrik Bærbak Christensen 25

Ups?

• Uhum – how does that work in Java?

• StandardPoint must now implement ‘getX()’ twice or???

• Exercise: What happens?

CS@AU Henrik Bærbak Christensen 26

Solution 2:

• Coarse-grained approach: Extend existing interface

– Just implement both

• Pro

– Less typing

– You can actually Program to an Interface in the façade impl!

• Con

– You get all methods

CS@AU Henrik Bærbak Christensen 27

TranslatablePoint

Mandatory Note

• We have read-only role interfaces for Card and Hero in

HotStone.

– But Game’s implementation and strategies need to manipulate

them…

– Use private interfaces for that ☺!

• Strategies needs special mutations of Game

– Use private interface(s) for that ☺!

• Now you ‘program to an interface’, and avoid hard

coupling to, say, StandardGame etc.

CS@AU Henrik Bærbak Christensen 28

Mandatory Note

• And iff you use the ‘extending existing interface’

– interface MutableGame implements Game { (mutators here) }

• … you can now remove most casts and hard couplings to

your StandardGame/StandardCard etc

– Map<Player, List<MutableCard>> handMap = …

– Interface HeroPowerStrategy {

– public void usePower(MutableGame game);

– }

• … and still have the full flexibility of providing any

concrete class that implements MutableX in your

CS@AU Henrik Bærbak Christensen 29

