
Software Engineering

and Architecture

Interface Segregation Principle

Role and Private Interfaces

Roles…

• … will be treated in much more detail soon, but…

• We use interface in our OO language to express a role

– interface Game

• Express the responsibilities of our HotStone game

– Allow clients to inspect game state, play a card, attack a hero, etc.

– Interface Card

• Express the responsibilities of a HotStone card

– Store mana cost, health, etc. Allow clients to get those values.

CS@AU Henrik Bærbak Christensen 2

Role-Object

• Objects implement/”play” these roles

– Class StandardGame implements Game

– Game game = new StandardGame(….);

– Now we know that ‘game’ object can act as defined by the role

‘Game’

• A role can be played by many different objects

– ‘Game’ is implemented by about 90 SWEA groups!

• All different (except if a group cheats ☺)!

• An object can play many different roles

– Huh?

CS@AU Henrik Bærbak Christensen 3

Role-Object

• An object can play many different roles

– My roles:

• Teacher, researcher, husband, father, taxpayer, colleague, friend, …

• But not at the same time…

– I am a father and a teacher. But I alternate between the roles…

• Student: “Please, Henrik, can you fix my flat bike tire?”

– No I will not! That responsibility belongs to the Father role

• Student: “Could you explain the ‘Role’ concept in programming?”

– Yes, I will do that. That responsibility belongs to the Teacher role.

• Child: “Could you explain the ‘Role’ concept in programming?”

– Uhum, probably not relevant, unless that child is a student of mine…

CS@AU Henrik Bærbak Christensen 4

Bottom-line

• An object may also serve different roles, but not all that

interact with it are allowed to use the full set of roles

– Only my children may interact with my father interface

– Only Danish Tax may interact with my taxpayer interface

• Our analogy

– The Game object currently serves two different roles

• Client/UI users that only are allowed to call the official ‘Game’

interface (ala: ‘Teacher’ interface)

• Strategies that must be allowed to alter internal game state, like

subtracting -2 health to a hero object (ala: ‘Father’ interface)

CS@AU Henrik Bærbak Christensen 5

ISP

• “Students should not use my Father interface”…

• Or ‘do not depend on methods you do not use’

• Example:

CS@AU Henrik Bærbak Christensen 6

Fine-grained Roles

• The ‘more specific’ role is expressed as a Role Interface

• Ala again

– I provide a ‘teacher’ interface (one role interface)

– And a ‘taxpayer’ interface (another role interface)

– Etc.

CS@AU Henrik Bærbak Christensen 7

Martin Fowler

Example

• The FigureCollection in MiniDraw only deals with adding,

removing, and iterating the collection of Figures in

MiniDraw

CS@AU Henrik Bærbak Christensen 8

A specific interaction (add+remove) between
the UI and the Drawing, expressed as the Role

Interface ‘FigureCollection’

Private Interface

• Role interfaces are often used to enforce more specific

encapsulation than is possible using private/public

methods and instance variables…

• Let us make an example, highly inspired by our project…

CS@AU Henrik Bærbak Christensen 9

James Newkirk

Example

• We have a system/framework/Façade which presents

(x,y) points to outside code, but that outside code must

never modify the (x,y) values!

• Read-only Role interface is a solution to that.

– Only accessor methods,

no mutator methods…

CS@AU Henrik Bærbak Christensen 10

Example

• However, internal classes inside the Façade of course

needs to mutate the state of these (x,y) points.

• Let us say that one class needs to translate (dx,dy) points

• Private Interface is a solution to that

CS@AU Henrik Bærbak Christensen 11

Example

• Now the internal, implementing, class of course

implements both

• That is, if you use ‘getPoint()’ from the outside you only

get access to ‘getX()’ and ‘getY()’

CS@AU Henrik Bærbak Christensen 12

Example

• Now, an internal PointStrategy can translate points like

• And can be called internally like

CS@AU Henrik Bærbak Christensen 13

Example

• However, a PointStrategy cannot access (x,y)…

• However, of course it is often the case, that we need just

that.

• Exercise: How do we solve that?

CS@AU Henrik Bærbak Christensen 14

Solution 1:

• Fine-grained solution: Missing accessor methods

– Just add those methods that are missing

• Pro

– Can select just the right set of accessors

• (here it is both of them, but if read-only had 20, we may just pick the

two we need).

• Con

– Same methods are now present in two interfaces

CS@AU Henrik Bærbak Christensen 15

Ups?

• Uhum – how does that work in Java?

• StandardPoint must now implement ‘getX()’ twice or???

• Exercise: What happens?

CS@AU Henrik Bærbak Christensen 16

Solution 2:

• Coarse-grained approach: Extend existing interface

– Just implement both

• Pro

– Less typing

– You can actually Program to an Interface in the façade impl!

• Con

– You get all methods

CS@AU Henrik Bærbak Christensen 17

TranslatablePoint

Mandatory Note

• We have read-only role interfaces for Card and Hero in

HotStone.

– But Game’s implementation and strategies need to manipulate

them…

– Use private interfaces for that ☺!

• Strategies needs special mutations of Game

– Use private interface(s) for that ☺!

• Now you ‘program to an interface’, and avoid hard

coupling to, say, StandardGame etc.

CS@AU Henrik Bærbak Christensen 18

Mandatory Note

• And iff you use the ‘extending existing interface’

– interface MutableGame implements Game { (mutators here) }

• … you can now remove all casts and all hard couplings

to your StandardGame/StandardCard etc

– Map<Player, List<MutableCard>> handMap = …

– Interface HeroPowerStrategy {

– public void usePower(MutableGame game);

– }

• … and still have the full flexibility of providing any

concrete class that implements MutableX in your

CS@AU Henrik Bærbak Christensen 19

